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HOW TO STAY IN A SET OR 
KONIG'S LEMMA FOR RANDOM PATHS 

BY 

ROGER A. PURVES AND WILLIAM D. SUDDERTH* 

ABSTRACT 

Starting at state x ~ X, a player selects the next state xj from the collection F(x) 
of those available and then selects x2 from F(xl) and so on. Suppose the object is 
to control the path xl, x2 ,""  so that every x~ will lie in a subset A of X. A 
famous lemma of K6nig is equivalent to the statement that if every F(x) is finite 
and if, for every n, the player can obtain a path in A of length n, then the player 
can obtain an infinite path in A. Here paths are not necessarily deterministic 
and, for each x, F(x) is the collection of possible probability distributions for the 
next state. Under mild measurability conditions, it is shown that if, for every n, 

there is a random path of length n which lies in A with probability larger than 
a, then there is an infinite random path with the same property. Furthermore, 
the measurability and finiteness assumptions can be dropped if, in the 
hypothesis, the positive integers n are replaced by stop rules t. An analogous 
result holds when the object is to visit A infinitely many times. 

1. Introduction and statement of results 

Suppose X is a nonempty set of possible states for a process and that to each 

x ~ X is associated a nonempty collection F(x) of finitely additive probability 

measures defined on all subsets of X. Then, starting from any x, one can 

construct a random sequence xl, x 2 , x 3 , . . ,  by selecting t roEF(x)  to be the 

distribution of xl, then selecting crl(x~) E F(Xl) to be the conditional distribution 

of x2 given xx, and tr2(Xl, x2) ~ F(x2) to be the conditional distribution of x3 given 

Xl, x2, and so on. The sequence or ={tro, o'~,. �9 �9 } is a strategy at x in F. As is 

explained in Dubins and Savage [3, pp. 7-21], Dubins [2], and Purves and 

Sudderth [9], each strategy determines a finitely additive probability measure on 

the sigma-field ~ of subsets of H = X x X x .  �9 �9 which is generated by the open 

subsets of H when X is assigned the discrete topology and H the product 

topology. This measure is also denoted by o- and is regarded as the distribution 
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of the random sequence xl, x2 , - . . .  (A reader unfamiliar with finite additivity 

theory can assume X countable and all measures countably additive on all 

subsets of X to get the gist of the results.) 

Let g be a bounded, real-valued ~-measurable  function defined on H and, 

for h =(hl, h2 , . . . )EH,  regard g(h) as the payoff to the player from the 

sequence h. The optimal reward operator is defined to be that functional I = which 

assigns to the function g on H the function ~ g  on X defined by 

(l~g)(x) = sup{crg :o, at x} 

for each x E X. Thus (I~g)(x) is the supremum of the possible expected payoffs 

for a player starting at x. 

Throughout  this paper we will use de Finetti's convention of identifying a set 

B with its indicator function. So, for example, I~B is written instead of I~IB for 

a set B ~ ~.  

Our first result relies on countable additivity. To state it, assume that M is a 

sigma-field of subsets of X and identity each measure defined on all subsets of X 

with its restriction to M. Suppose that, for each n = 1 , 2 , . . . ,  2', is a mapping 

which assigns to each x E X a countably additive probability measure 3,, (x) on 

M. Assume that each y, is M-measurable in the sense that y . ( x ) ( A )  is an 

M-measurable function of x for every A ~ M. Further assume that, for every x, 

r ( x )  = n = 1 , 2 , . - . }  

and that there is an n = n(x) such that ~'k (x) = y, (x) for all k => n. Such a F is 

said to be M-measurable and pointwise finite. 
For any subset A of X and for n = 1 , 2 , . . . ,  let 

A " = { h E H : h ,  E A ,  i = I , 2 , ' " , n } ,  

A| ~ H  :h, EA,  i = 1 , 2 , . . . } .  

THEOREM 1. If F is M-measurable and pointwise finite and if A E M, then 

(1.1) I~A = = inf I~A ". 
r l  

To see that Theorem 1 is a generalization of K6nig's lemma [7], suppose that 

all probability measures available are pointmasses and take M to be the 

sigma-field of all subsets of X. (Interesting modern treatments of K6nig's lemma 

are in Knuth [6] and Kuratowski and Mostowski [8].) Theorem 1 is almost a 

corollary to results of Sch~il [10] and Schreve and Bertsekas [11] where more 

general payoff functions are considered. However,  we allow for a more general 

sigma-field and our proof is somewhat simpler. 
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As is well-known and easy to see, K6nig's lemma may fail if the condition of 

finiteness is dropped. In addition, (1.1) may also fail if the assumption of 

countable additivity is not satisfied. However,  an analogous result holds in a 

general setting if the integers are replaced by stop rules. 

An incomplete stop rule z, as defined in [3], is a mapping r : H---> {1, 2 , . ' -  } t3 

{oo} such that if z ( h ) < ~  and h, = h'~, i = 1,. . . , z (h  ), then ~ ( h ) =  r (h ' ) .  A stop 

rule t is an incomplete stop rule which is everywhere finite. If t is a stop rule and 

A C X, let 

A '  = {h : h E A"h)}. 

THEOREM 2. For every F and  every A C X,  

(1.2) I ~ A ~ = i n f I ~ A  '. 
t 

Furthermore, [or each e > 0 ,  there is a stop rule t such that ( I~A ' ) ( x )<= 

( ~ A |  e [or all x E X .  

Equation (1.2) says that if, for each stop rule t, there is a way to stay in A at 

least until time t with probability at least �89 (say), then there is a way to stay in A 

forever with probability at least 12- e. 

To state our final result, let A C X  and define 

[A i.o.] = {h : hi E A for infinitely many i}. 

THEOREM 3. For every F and  every A C X,  

(1.3) ~ [ A  i.o.l = inf I~[z < 0o l 
-r 

where the in f imum is over all incomplete stop rules r which are finite on every h in 

[A i.o.]. Furthermore, for each e > O, there is such a r for which 

I~[r < o~](x)=< I~[A i .o . l (x)+ e 

for all x ~ X.  

Each of the three theorems can be regarded as approximation results in the 

Dubins and Savage theory of gambling. In particular, the left-hand side of (1.3) is 

the optimal return function, denoted by V in Dubins and Savage [3], for the 

nonleavable gambling problem which has gambling house F and utility function 

A. 
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2. Two properties of the optimal reward operator 

Throughout this section g, gl, and g2 are bounded, real-valued, ~-measurable 

functions with domain H. Here is a trivial but useful property of l~. 

LEMMA 1. gl ~ g2 ~ l-~gl ~ l-~g2- 

If p = (Xl,"" ",xm), then gp is the function on H defined by (gp)(h)= g(ph) 

where ph is that element of H which consists of the terms of p followed by those 

of h. For a stop rule t and h = ( h ~ , h 2 , . . . ) E H ,  h,(h)=h,  ch ) and p , (h )=  

(h~,..., h, (h)). For a strategy or, cr[p] denotes the conditional strategy given p 

and cr(g I P) is often written for the quantity cr[p](gp), which it is natural to 

regard as the conditional or-expectation of g. Thus the formula 

(2.1) o-g = J cr(g ]p,)cl,r 
can be interpreted as conditioning on the past up to time r In the conventional, 

countably additive theory, formula (2.1) would be an instance of the familiar fact 

that the expectation of a random variable can be written as the expectation of its 

conditional expectation given another variable or a sigma-field. In the finitely 

additive theory of Dubins and Savage, it was proved for finitary (continuous) g 

in [3] (equation 3.7.1) and holds for all bounded, G-measurable g as follows 

from theorems 4.1 and 5.1 of [9]. The next lemma gives a similar formula for the 

operator ~ and is a version of the optimality equation of dynamic programming. 

To state it, define I~(g Ip,) to be that function on H whose value at h is 

(I~gp)(x) when p = p,(h) and x = h,(h). Notice that I~(g IP,) is determined by 

time t and, hence, is a finitary function (theorem 2.7.1, [3]). It is natural to regard 

~ ( g  I p,)(h) as the conditional optimal reward which it is possible for a player to 

achieve who has so far experienced p,(h). 
For the proof of the lemma, another definition is needed. Two strategies cr 

and or' agree prior to a time t if o-0 = o-~ and, for every h and n with 0 < n < t(h), 
cr. (p. (h)) = cr'(p. (h)). 

LEMMA 2. I~g = l~(I~(g I P,))" 

PROOF. For any cr at x, 

o,g = f o-(g I p,)d~ 

f r (g I 

r (I (g I p,)). 
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Take the supremum over o" at x to see that (Fg)(x)<= I~(r~(g [p,))(x). To 

prove the opposite inequality, let e > O. Let o- be a strategy at x such that 

~( l~(g [p,)) _-> F ( r~ (g  [ p,))(x) - e/2 

and, for each h E H ,  let i f ( h ) =  (?(p,(h)) be a strategy at h,(h) such that 

6-(h )(gp, (h )) >= I~(g [ p,)(h) - e l 2 .  

Define o" to be that strategy at x which agrees with or prior to time t and has the 

conditional strategy tr'[p,(h)] = # (h )  for every h. Then 

(r g )(x ) >= g 

= f Ip,),i,,, 

= f 6(h)(gp,(h))do- 

> f l ~ ( g  [p, )do"  - e /2  

_-> F ( F ( g  [p , ) ) -  e. [] 

A counterpart of Lemma 2 for Borel measurable problems is lemma 4.6 of 

Dubins and Sudderth [4]. 

For a bounded, real-valued function ~p defined on X, let 

(V'q0(x) = sup{Tq~ : 7 E F(x)}. 

If t is the constant 1, then the function I~(g [p,) = I~(g [p,) depends only on the 

first coordinate h~ of h and can be regarded as a function defined on X. With this 

proviso, the equality of Lemma 2 specializes to give 

(2.2) l-=g = r ' ( I~(g  [p,)). 

3. The proof of Theorem 1 

In this section F is assumed to be ~-measurable  and pointwise finite so that 

F(x) = {Y, (x) : n = 1, 2 , . . .  } where the 3'. are ~t-measurable and 7k (x) = 7, (x) 
for k => n = n (x). Also A ~ ~t. 

Let Q = inf, I~A".  

LEU_MA 1. I~A ~ =< Q. 
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PROOF. For every n, A = C A"  and, hence, I~A = =< I-=A". [] 

The proof of the opposite inequality will be given in several lemmas. 

LEMMA 2. For every x, ( I~A ' ) ( x )=(F 'A) (x )  and, [or n >= 1, 

( l ~ a  ,+1) (x) = r ' ( A  (I-~A ")) (x). 

PROOF. Use (2.2). [] 

LEMMA 3. For every n, I~A" is M-measurable and, hence, Q is also. 

PROOF. If g is bounded, M-measurable, then x --> yk (x)g is M-measurable, 

and, consequently, x--~,(Flg)(x)=sup3"k(x)g is M-measurable. Now use 

Lemma 2. [] 

LEMMA 4. I[ {g~} is a uniformly bounded sequence ofl M-measurable [unctions 

defined on X and converging pointwise to g, then 

lim (Flgi)(x) = (Flg)(x) [or all x. 
i 

PROOF. Fix x and n = n (x). Then 

lim (F 'g i ) (x)=  lim max 3'k (x)g, 
i " k e n  

= max lim yk (x)g~ 
k_~n i 

= max yk (x)g 
k e n  

= (Flg)(x). [] 

LEMMA 5. O = FI(AO). 

PROOF. Let n - o  oo in the second equation of Lemma 2 and make use of 

Lemmas 3 and 4. [] 

By Lemma 5 and the pointwise finiteness of F, there is, for every x, a 3' E F(x) 

such that 

(3.1) 3'(AO) = O(x). 

Let k(x)  be the least k such that (3.1) holds with 3' = 3'k(x) and let 3 ' (x)= 

3'kCx)(x) for every x. For each x, let tr = t~(x) be the strategy which uses 3"(y) 

whenever the current state is y. 

LEMMA 6. For every x, ffr(x)(A | >= O(x). 
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PROOF. 

HOW TO STAY IN A SET 

Use (3.1) and induction to see that, for every n, 

f A " ( h ) O ( h . ) d d ' ( x ) ( h )  = O(x).  

Since 0 _-< Q -<_ 1, 
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~(x)(A")>= O(x)  

for all n. New let n --* ~ and use the fact that 6"(x) is countably additive on M ~. []  

Because 6 ( x )  is a strategy at x, 

(I~A ~)(x) = 6"(x)(A ~) 

and Theorem I follows from Lemmas I and 6. Notice that it has also been shown 

that # is an optimal stationary family of strategies. The existence of such a family 

follows more directly from theorem 3.9.6 of Dubins and Savage [3]. 

4. The proof of Theorem 2 

In this section, let 

Q = inf{l-~A ' : t a stop rule}. 

LEMMA 1. I~A ~_-< O. 

PROOF. A ~ C A ' for every t. 

LEMMA 2. Q _-<FI(AQ). Indeed, for every e > 0 ,  there is a t such that 
( r A  ')(x ) <= F ' (AQ )(x ) + e for all x. 

PROOF. Fix e > 0. By definition of Q, there is, for every x, a stop rule }-(x) 

such that 

Define the stop rule t by 

Then 

So, by (2.2), 

( I~A i{x))(x)<= Q ( x ) +  e. 

t (h)  = }-(hl)(h2, h3, .-"  ) +  1. 

(A' )h ,  = A i(h,) if hi E A, 

= 0  if h,~A. 
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I ' ~ A  ' = F'(I~(A' I hO) 

= F ' (A (F~A r(h,))) 

=< F1(AQ) + e. [] 

Now let e > 0. Use Lemma 2 to find for every x and n = 0, 1,. �9 �9 an element 

y , ( x ) E F ( x )  such that 7n(x)(AO)>= O ( x ) - e / 2  ~+1. Next for each x, let o-= 

g-(x) be the strategy at x which has o-0 = y0(x) and o-,(x~, . . - ,xn) = y , (x , )  for 

every n and x b ' " , x , .  

LEMMA 3. For every stop rule t and every x ~ X, 

Q(x)<= 6"(x)(A'Q(h,))+ e <= dr(x)(A')+ e. 

PROOF. The sequence Q,,(h) defined by Qo=Q(x) and Qn(h) = 

A"(h)Q(h , )+e(1-1 /2  n) is an upper semimartingale under t~(x). The first 

inequality now follows from theorem 2.12.2 of [3]. The second is obvious. []  

By corollary 5.3 of [9], 6-(x)(A') converges to 6(x)(A ~) as t increases. Also, 

d'(x)(A ~) <= (I~A~)(x) by definition of I ~. Thus it follows from Lemma 3 that 

O =<I~A ~. 

This together with Lemma 1 yields the first assertion of Theorem 2. For the 

second assertion, first use (2.2) to see that 

I~A ~ = FI(A (I-~A ~)) = F1(AQ) 

and then use the second assertion of Lemma 2. 

5. The proof of Theorem 3 

Let A C X and let 

Also, in this section, let 

G ~ = [A i.o.l. 

O = inf{l~[z < ~] : z E T} 

where T is the collection of incomplete stop rules r such that G C [z < oo]. By 

Lemma 2.1, 

(5.1) l ~ G  ~ ~ O. 
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Most of the remainder of this section is devoted to proving the opposite 

inequality. 

Here is a simple technical lemma. 

LEMMA 1. If  r is an incomplete stop rule and or is a strategy, then 

o-[r < oo] = sup{tr[~- < s]:s  a stop rule} 

(5.2) = sup{tr[~" = r]: r a stop rule}. 

If, in addition, B E ~ is a subset of ['c < oo], then 

,7r(B Ip.)do" 

(5.3) --su {I 
PROOF. The sets [r _-< n] increase to [r < ~ ] ,  and so, by corollary 5.3 of [9], 

~r[r _-< s] increases to o-[~- < m]. This establishes the first equality in (5.2). The 

second follows from the fact that [r = r] = [r N s] when r is taken to be z ^ s, the 

minimum of r with s. 

To see (5.3), let s be a stop rule, r = r ^ s, and use (2.1) to write 

f o'(B Ip,^,)da 

= Ip')d  + f,>s o'(B lps)&r. 

The second term on the right equals 

n 

and approaches 0 as s increases by (5.2). The first term approaches 

f o-( B I pOd, . [] 
The next lemma is crucial to the proof of the inequality opposite to (5.1). Let t 

be the incomplete stop rule corresponding to the time of first entrance into A 

and let 

O' = [t <oo]. 

So G ~ is the event that at least one visit is made to A. 

LEMMA 2. O <---- W(G~(O(h,)).  Indeed, for each e > 0 ,  there is a r E T such 

that 
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(5.2) 

[or all x. 

PaOOF. 

Define 

R. A. PURVES AND W. D. SUDDERTH 

(V[~" < ~])(x) =< ( V ( G ' O ( h , ) ) ) ( x )  + 

Isr. J. Math. 

Let e > 0. For each x E A, choose a ? ( x ) E  T such that 

(i~[~(x) < o~1) (x) < O (x) + e/2. 

~'(h)=~ ift(h)= 

= t ( h ) +  ~(h, (h))(h, th)+l, h, th)§ ) if t ( h ) <  oo. 

Then z ~ T and, for each x, there is, by definition of Q, a tr at x such that 

(5.3) O ( x )  < tr[r  < oo] + e/2. 

Now use (5.2) from Lemma 1 to calculate 

o-[~- < ~1 = ~<~ o-(~- < ]p,)a~ 

(5.4) = f,<~ cr[p,l[~(h,)<~]&r 

<--_ [ O(h,)do" + e/2. 
. I t  

The desired result is a consequence of (5.3) and (5.4). [] 

In the sequel it will be shown that any function O which has values in [0, 1] 

and satisfies the inequalities of Lemma 2 is dominated by F G  ~. 

The next lemma restates part of Lemma 2 in a more useful form. 

LEMMA 3. For every x E X and e > O, there is a tr = ffr(x, e ) at x and a stop 

rule r = F(x, e) such that 

(5.5) f,, O(h,)d~ > O(x)- 

where K = K(x ,  e)  = [t = r] is a clopen subset of [h, E A]  and is determined by 

time r. 

PROOF. By Lemma 2, there is a o" at x such that 

f,<| O(h,)do- > O ( x ) -  e/2. 
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Now use (5.2) to approximate [t < ~] by [t = r]. []  

Let e > 0 and x0 E X. The result of Lemma 3 will now be used to construct a 

strategy cr at x such that 

(5.6) tr(G ~) ~_ Q(x ) - e. 

This inequality is enough to establish the reverse inequality to (5.1) 

The definition of cr depends on an inductive construction of a sequence {K.} 

of clopen sets and a sequence {r,} of stop rules which have the following 
properties. 

(i) For every n, K~ is determined by time re. 

(ii) For every h and n, r , (h)<r . . , (h ) .  
(iii) fx, Q(h,,)dtr > Q(x)  - e/2. 
(iv) For n = 1 ,2 , - . .  and h E n ~K:, 

SK O(h,..,tq~,h~l)dcr[q~ (h)] > Q(h,~(h)) - el2 ~, 
n§ h ) 

where q, (h) is written for p,. (h). 

(v) A T K ,  c G  ~. 

With the aid of Lemma 4, it is not difficult to carry out the construction. 

Take r~ = e(x, e/2), K1 = K(x, e/2) and let cr agree with fi(x, e/2) prior to time 
r~. By Lemma 3, 

(5.7) KtC [h, ,EA].  

Suppose rl," �9 rn and K1," �9 ", Kn have been defined. Take rn+l to be that stop 

rule which, given the past up to r,, continues to time ~(h,., e/2~). That is, 

r~.t[q~ (h)] = F(h,. (h), e/2 n) 

for all h. Also take K..~ to be that ciopen set which satisfies 

K,+,q~ (h) = K(hr. (h), e/2").  

Notice that 

(5.8) K~§ c [h,.., ~ A ]. 

Finally require the conditional strategy tr[qn (h)] to agree with fi(h,. (h), el2") 

prior to time ~(h,.(h), e/2"). 

Properties (i) and (ii) are clear from the construction. Properties (iii) and (iv) 

are instances of (5.5). Property (v) is a consequence of (5.8). 

The next lemma generalizes lemma 7.1 of [9] and the proof is similar. 
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LEMMA 4. Let O be a function from X to the interval [0, 1] and suppose that O, 
e, x, {K,} and {r.} have properties (i) through (iv). Then 

(5.9) ~( N K,)>O(x)-e. 
PROOF. There is no harm in assuming, as we do, that Q ( x ) >  e. 

Let K be clopen and contain n 7 K~. It suffices to show 

(5.10) o'(K) >= O(x)  - e. 

The proof of (5.10) is by induction on the structure of K. 

Suppose first that K has structure 0. Then either K = H or K = ~ .  If K = H, 

(5.10) is clear. To show that K cannot be empty, a history h E n K~ will be 

constructed. By property (iii), there is an h ' E K ~  such that Q(h,,(h~))>= 
Q ( x ) -  e/2 > e/2. So, by property (iv), there is h 2 E K 2 such that h 2 agrees with 

h'  up to time r,(h 1) (i.e. q~(h ~) = ql(h 2)) and Q(h,2(h Z)) >= Q(h,,(h ')) - e / 4 >  e/4. 

Continue in this fashion to define h "+~ U K.+I such that h "§ agrees with h" up to 

time r. (h"). Then take h to be that history which agrees with h" up to time 

r, (h ") for every n. Since K, is determined by time r, and h" E K,, the history h 

is in K. for every n. 

For the inductive step, assume (5.10) holds for sets K having structure less 

than the positive ordinal a, and then suppose k has structure a. 

Fix h E K, for this paragraph and set x ' =  h,,(h), e ' =  e/2, q =q~(h), cr '= 

tr[q], K', = K,+~q, r', = r,+~[q], and K ' =  Kq. This new collection with primes 

satisfies all the hypotheses of the lemma. In addition, K'  contains n ~ , , K ,  and 

has structure less than t~. So, by the inductive hypothesis, 

(5.11) o-(K l q,(h )) = o-'(K') ~ Q(h,,(h ) ) -  el2. 

Now use (2.1) and calculate: 

~ (K)  = f cr(K I ql(h))do'(h) 

>= [.. Q(h,,)do" - e/2 
J 1 r  I 

> Q ( x ) -  e. 

The first inequality is by (5.11) and the second is by property (i). [] 

By Lemma 4 and property (v), 
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Thus, because e is arbitrary and tr is a strategy at x, 

(5.12) (~G~)(x ) >- Q(x ). 

This inequality together with (5.1) implies 

(1.3) In the notation of this section, Q = I~G ~. The final assertion of 

Theorem 3 follows from Lemma 2 and the lemma below. 

LEMMA 5. Q >I~(G'Q(h,)). 

PROOF. Let x E X and let o" be a strategy at x. It suffices to show 

tr(G~Q(h,)) = f ~  O(h,)do" 

<=O(x). 

By Lemma 1, t can be approximated by a stop rule r and it suffices to show 

f Q(hr)do <= O(x). 

This holds by corollary 3.3.4 of Dubins and Savage [3] which applies because 

Q = ~ G  ~ is the optimal return function V of the gambling problem with utility 

function A. [] 

6." Remarks on regularity, measurability and game theory 

For a fixed x, the optimal reward operator determines a set function 

tx~(B)=(I~B)(x) 

on the sets B E ~.  Each of the three theorems can be interpreted in terms of the 

regularity (and uniform regularity) of these set functions. For example, if A C X, 

then the set A | is closed in h and, for each stop rule t, the set A '  is clopen. Thus 

Theorem 2 states that the value of/~x on the closed set A ~ is the infimum of its 

values on clopen sets containing it. Similarly, Theorem 3 states that the Gs set 

[A i.o.] can be/xx-approximated by an open set containing it. We believe that 

these results still hold when A ~ is replaced by an arbitrary closed set and [A i.o.] 

by an arbitrary G~. It would be interesting to know whether every B E ~ can be 

/x,-approximated by open sets containing it, but we do not know the answer even 

in the special case when X is finite. 

Presumably, Theorems 2 and 3 remain true in a Borel measurable, countably 

additive setting where X is standard Borel, F is a Borel house as in Strauch [12], 
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A is a Borel subset of X, and only Borel measurable stopping times are 

considered. There are, however, measure theoretic difficulties in adapting the 

proofs. For example, we have not succeeded in proving the universal measurabil- 

ity of the functions Q in sections 4 and 5 except in the special case when F is 

Borel absolutely continuous as in Dubins and Sudderth [4]. (Additional refer- 

ences for measurable gambling and dynamic programming are BlackwelI, 

Freedman, and Orkin [1] and Dubins and Sudderth [4].) 

All three of the theorems can be interpreted as statements that certain games 

have values. For example, here is equality (1.3) in a different guise: 

(6.1) sup inf o'(0) = inf sup (r(0). 
o- 0 0 t r  

The supremum is over all cr at x in F and the infimum is over all open sets 0 

which contain G = [A i.o.]. (Every such 0 is of the form [r < ~] for some 

incomplete stop rule z.) In the terminology of game theory, player A chooses an 

open set containing G, player B chooses a strategy at x, and A pays B an amount 

equal to the measure of the open set under the strategy. Equality (6.1) expresses 

the fact that this game has a value. However, if cr is allowed to vary over an 

arbitrary collection of measures rather than the strategies at some x, then a 

simple example shows that the game need not have a value. 

EXAMPLE. Let X = {0, 1}, A = {0}, and, for every n = 1 , 2 , . - . ,  let A, be 

point-mass at that element h(")EH such that h~")=0 for i-< n and = 1 for 

i > n. Then, for every open set 0 D (5, there is an n such that h ~') ~ 0 and, hence, 

However, 

inf sup A, (0) = 1. 
0 n 

sup inf A. (0) = sup A, (G) = 0. 
n o n 
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